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A molecular orbital method is described which can be applied to molecules where the
restrictions of m-electron theory are not fulfilled. It has the following main characteristics:
1. Atomic SCF functions are used as a basis, 2. Core-valence interactions are treated by means
of perturbation theory, 3. Mulliken type approximations are used for many-center integrals.

Ein M. O. Verfahren fiir beliebige Molekiile mit

1. atomaren SCF-Funktionen als Basis,

2. Behandlung der Wechselwirkung von Rumpf und Valenzelektronen mittels Stérungs-
rechnung und

3. Mulliken-Néherung fiir Mehrzentrenintegrale wird beschrieben.

Description d’une méthode d’orbitales moléculaires pouvant étre appliquée aux molécules
ne satisfaisant pas aux restrictions de la théorie des électrons . Ses principales caractéristiques
sont: 1) les fonctions SCF atomiques sont utilisées comme base, 2) les interactions entre le
coeur et les électrons de valence sont traitées par perturbation, 3) des approximations du type
Mulliken sont utilisées pour le calcul des intégrales polycentriques.

1. Introduetion

Molecular quantum mechanics has made great advances in recent years with
the help of electronic computers. Ab initio calculations of the electronic structure
of many diatomic and some simple polyatomic molecules are now available and
will be of increasing importance in the future. However, the amount of labor
involved for such a treatment of many chemically interesting molecules is for-
bidding and makes simplifications necessary. In many cases even very crude
approximations can give satisfactory answers to the chemist. For z-electron
systems the semiempirical molecular orbital methods named after HooreL [7]
and PARISER, ParR, and PorLe [19] have been especially fruitful, and several
attempts have been made to develop similar schemes for molecules of a more
general type.

The extended HUckEL or Worrssera-HELMHOLZ approach [25] is partic-
ularly simple and has given important contributions to the theory of transition
metal complexes. However, its theoretical foundation is rather weak and when a
more accurate method is needed it seems desirable to base it on the self-consistent
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field method. Even this method in its non-empirical form has severe limitations,
i.e. the neglect of electron correlation and the often very restricted set of basis
orbitals employed. In spite of this we will make the MO-LCAO-SCF approxima-
tion our starting point and make further approximations and simplifications from
there on leading to a scheme analogous to the Pariser-Parr-Pople method for 7-
electron systems. Since we want to be able to treat all kinds of molecules we cannot
however make use of all simplifying assumptions in z-electron theory. Therefore
our method is slightly more complex than the Pariser-Parr-Pople method. Several
other authors have followed similar lines of thought. Two electron systems have
been recently considered by PoHL and coworkers [21], KLopMAN [10], and JBENKINS
and PrpLEY [§]. HaRT, RoBIN, and KUEBLER [5] have used an approximate
MO-LCAO-SCF method including overlap on the P, molecule, but with some
approximations which are difficult to carry over to more general systems. Finally
PorLe and coworkers [22] and Kaurman [9] have developed methods making use
of the zero-differential-overlap approximation.

The method presented here differs from previous work in several ways. The
general principle has been to avoid adjustable parameters as far as possible. Atomic
SCF-orbitals are used as basis functions and the eigenvalue relations fulfilled by
these are used to simplify matrix elements of the Fock operators. This is an
approach similar to the GoEPPERT-MAYER-SELAR approximation [3], which is
obtained if empirical ionization potentials are introduced for atomie orbital
energies. The distinction between core and valence orbitals is explicitly made and
core-valence interactions are discussed in terms of LOWDIN’s partitioning approach
to perturbation theory. Since we keep track of the inner shells, we are able to deal
with elements belonging to the same group of the periodic table on an equivalent
basis, and thereby retain more of classical chemical concepts. For the application
of the method to large molecules, integral approximations of the Mulliken type
are introduced and their invariance properties discussed.

2. Basis orbitals

We choose as our atomic orbital basis analytical Hartree-Fock orbitals which,
thanks to CLEMENTI’s calculations [2], are now available for all atoms and positive
ions with Z< 36. In this way we have restricted our basis to only those orbitals
which are occupied in the atomic ground states. Compared to a minimal basis of
Slater orbitals, analytical atomic Hartree-Fock orbitals are more diffuse and give
a better energy in ab initio calculations [7]. The optimum orbitals obtained from
molecular Hartree-Fock calculations seem to lie in between these two choices.
Another advantage of Hartree-Fock orbitals over simple exponentials is that
orbitals on one center are orthogounal to each other and are eigenfunctions to an
effective Hamiltonian. Molecular integrals are however more difficult to calculate,
a disadvantage which can partly be balanced by means of integral approxima-
tions.

3. Formal development of theory

For a single determinant wavefunction all physical properties can be derived

from the first-order or Fock-Dirac density matrix

ol 1) = 3 $F(1") (L)
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where the summation extends over all occupied spinorbitals in the determinant.
The total energy is given by

B~ 3 2% Fp j by 0ar(1,1) de, +
£ 3] lonl1,1) 00(2.2) — 031(12) qur(2)] i, d, ()
and the effective Hamiltonian or Fock operator by
Far—hy + j dz, _r% (1 — Py one(2',2) . 2)

Here hy = T — > Z,|rg: is the sum of the one-particle kinetic energy operator T

7
and nuclear attractions Zy/ry;. We write the molecular Fock-Dirac density matrix
px formally as

om=0,+0 =20 +a, 3)
g

where g4 is a density function associated with the isolated atom g and ¢’ a correc-
tion term. For closed shell atoms, g, will be the atomic Fock-Dirac density matrix,
and for open shell atoms, a suitable average which will be discussed further in
Sec. 5. It is further convenient to introduce the total atomic effective potentials

1

(4T

Uy =~ Zofru 4 | doa (1 — Pr) oy (2/2) @)
which permits us to write the Fock operator
Fy=Ty+ 30U+ j dmz;j? (1 — Ppy) 0'(2',2)
= lar + [ doy (L= P 0(2'2). (5)
For the total energy we first split gyr into g and o’ and write
E=E,+ & (6)

where B, contains all terms independent of ¢’, thus

By='3 Zy0af R + | hu oot 1)z,
g<h

+ 3ol 022) — 00(1.2) 0y(2)] di, dy (7)

and
B = [ g 00) dy + [ - [o1) 0/2.2) — 0(1,2) ¢'2,1)] didzy +
41 J f: [o'(1,1) 0'(2,2) — 0'(1,2) 0'(2.1)] dixydicy
= [ hrg W) do + 3000 022) — (1) S0 dunde,  (®)

= % j' (hM + Fug) Ql(il,i) dxl .
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To the atomic densities g, we associate atomic energies
By = [ (1~ Zyfr) 0ot0' 1) iy

1 [ L) 04(22) — 04(1,2) 04(2,1)] iy ©

and obtain
Zyq
By = z E, + Z {ZgZh/Rgh — j—@h(i,i) da; —
J‘_Qy 1,1) dx;, + J— lo4(1,1) on(2,2) — 04(1,2) on{2,2)] d.z‘ldxz} (10)
~ 3B+ 3 Zy|TlR— [ a0 de) +
g g<h n

+ 3 | Ungolt' 1) day
g<h

The various terms in these expressions can be given the following physical inter-
pretation. Ey can be thought of as the energy of an atom in a “valence state” with
the density matrix ;. The difference between E, and the Hartree-Fock atomic
ground state can either be calculated rigorously or estimated from the atomic
spectrum. Since E, is independent of other atoms it can be neglected in calcula-
tions of bond angles and distances. The remaining terms in %, give the interactions
between unperturbed atoms while B’ is the energy associated with the electron
redistribution which gives the main contribution to the molecular binding energy.

4. Matrix representation of the Fock operator

As mentioned above, for closed shell atoms the atomic density function g, is
chosen to be the Fock-Dirac density matrix of the atom in its ground state. With
| ig)> denoting an atomic SCF orbital ¢ on center ¢ we have the eigenvalue relation

(Ty+ Ug) | ig> = &g | ig> (11)

where g;4 is the orbital energy. For open shell atoms a single determinant does not
in general fulfill the symmetry relations of the true wave function. The SCF ground
state is therefore in this case represented by a sum of determinants with given
coefficients. The Fock operator is different for closed and open shells and contains
farther coupling terms between open and closed shell orbitals of the same sym-
metry. All these correction terms are here taken together into an operator W,
defined by

(Ty+ Uy) | 1g) = (eag + W) | ig> (12)

where g is the open or closed shell orbital energy.

Let us now consider the matrix representation of Fps. In the chosen basis
system, which is now treated as spin independent, we represent ¢’ by the matrix
R’ = {Ry;} and introduce the Mulliken notation for electron interaction integrals

(57| H) = [ 4%(1) 1)~ B¥(2) 12) doyg (13)

where now the atomic indices have been suppressed. Using (12) we write the diag-
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onal elements of the Fock operator as
<ig[FM|ig>=ew+<i9|WIig>+fZ <ig | Us | ig> +
#9
+ 5 By l6i | k) — % (k| )] - (14)
7]

The off-diagonal elements (ig | Fiy | jh> are divided into two groups, g = &, and
g+ h. For g = h we get

ig | For | jg> = <ig | Wyl?'g>+f§g g | Ur ligy +
+ g Ry [ | By — 5 (6% | 1)) (15)
and for g+ h
Gig | Far | by = Auilesg + &) + <ig | Wy + Wi | B> —
— g | Ty | A * %’h@g | Uy | k> + (16)
+ kZl Ry [(57 | ) — 3 (3k | 1j)]

where A;; is the overlap integral (ig | j&).
The molecular orbitals are written in LCAO form as

b= 2|1 cn (17)
?
and the Hartree-Fock equations in matrix notation
(Fy—Ag)a=0;1=1,2,3... (18)

where ¢; is the column vector {¢;;}. The index A will frequently be suppressed in
future sections.

5. Approximate relations for open shell afoms

It is convenient to let g4 for an open shell atom be the ground state charge
distribution averaged over degenerate orbitals. Thus every orbital in an open shell
is occupied by the same fractional number of electrons with « and § spin. Neglecting
coupling terms which in general are small we have, following Roorraan [23], for
the closed shell Fock operator

P12t [ oy (- P Sp @K@ =T+ Uy (19)

g1

where the summation over 4 is over spin orbitals and p; denotes the spin orbital
average population. In this approximation the W-operator is clearly given by
W = Fe — Fo. If |m) and | k) are open and closed shell SCF orbitals with the

eigenvalue relations

Fe|ky =cr | ky; FO|m)=ep | m) (20)
we have since (m | k> =0

m | W ky = <m | k) (e — em) = 0. (21)

The open shell Fock operator is under the same assumptions
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Z, 1
Fo=Ty— =+ fdxza;pi a; 37 (2) $i(2) —

= [ dnl S gt @ 4it) P 22)

where a; and b; are constants which are equal to unity for closed shell orbitals and
depend on the atomic state for the open shell. A table of these constants for open s
and p shells is given in RooTHAAN’s paper [23]. The matrix element of the W-
operator between an arbitrary orbital ¢ and an open shell orbital on atom g is thus
given by

G| Wo|mg> =3 BG[(L — ay) (m ] §j) — & (1 — by) (5 | jm)] (23)
7

where the summation is over open shell space orbitals on atom ¢ and {Rf} is the
(diagonal) matrix representation of gy, However, since the coupling terms have
been neglected the relation (22) is not necessarily fulfilled and will have to be
imposed a priori.

An alternative to this treatment is to use eigenfunctions of the operators 7', + U,
as basis orbitals. The Hartree-Fock-Slater functions calculated by HErRMAN and
SkILLMAN [6] belong to this category. They are however given in numerical form
and will have to be approximated by analytical expressions if conventional molec-
ular integral programs are to be used.

6. Separation of core and valence orbitals

A solution of the full secular Eq. (12) can always be achieved. However, it is
well known that the inner orbitals do not change very much when going from atom
to molecule. We will make use of this fact and make a full variational calculation
only for the outer or valence orbitals while we treat the core orbitals and the core-
valence interactions by means of perturbation theory.

The core orbitals are localized near the nuclei, and interactions between cores
on adjacent orbitals can be neglected in the first approximation due to small
overlap integrals. The valence electrons are much more spread out and interact
strongly with each other. One-center core-valence interactions are quite small
owing to the orthogonality of basis orbitals on the same center, but two-center
interactions might be of some importance. Core orbital energies may however be
quite different in atoms and molecules. Chemical effects in X-ray spectra are quite
small relatively speaking, but represent nevertheless shifts of core orbital energies,
sometimes of the order of 10 eV [4, 11]. That these facts agree with our model can
be seen in the following way. Of terms perturbing the core orbital energies (14) the
coulomb interactions > Ry(i | k) are the most important. Since ¢’ contains
contributions almost exclusively from valence electrons, and the potential of a
uniformly charged spherical shell is constant inside the shell, the spherical com-
ponent of the perturbation will be more or less constant inside the core, i.e. it will
not affect the form of the orbitals as much as their energies. The non-spherical
components will cause a first order electrostatic splitting or broadening of inner-
shell p-states in cases of low molecular symmetry; as long as this effect is small
second order angular effects in s-orbitals may safely be ignored. Another conse-
quence of a model with a core unaffected by other than first order perturbations is
that if there is more than one inner shell the K shell energy changes most, a situa-
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tion which is also confirmed by experimental evidence in the form of X.ray
emission spectra [18].

In the expression for the total energy, the core-valence electrostatic interactions
can be attributed to either the core or the valence orbital energies. Therefore, if
second and higher order core effects are neglected, only valence electron energies
and wave functions need to be considered in a discussion of the chemical bond.

7. Core-valence non-orthogenality and higher-order interactions

With the atomie orbital basis system employed here there is a non-orthogonality
between core and valence orbitals on different centers. This problem does not
appear in s-electron theory and has usually been ignored in previous approximate
MO-LCAO theories. Here we will make use of a perturbation method leading to
results similar to the pseudopotential introduced by PrrLIrs and KLEmwman [20]
for the orthogonalized plane wave method of band calculations in solids. The
scheme is quite general and can be applied even if the requirements are not fulfilled
for a first-order perturbation treatment of the core electrons.

Following LowpIN [16] we start from a system of linear equations written in
matrix form

Mc=0. (24)

In our case M = F — AE where F is the matrix representation of the Fock ope-
rator and 4 the overlap matrix. Dividing the basis functions into two groups a
and b we write
{Mua o+ Mypco=0
My co -+ Mppcy=0. (25)

From the second of these equations we solve for ¢, = — My My, cq and obtain
the first equation as

(Moo — Moy Mb_bl Myg) €q = 0. (26)
We now let @ be the valence orbitals, b the core orbitals. Vyq = — Mup My My,
is now the matrix representation of a pseudopotential V from the core orbitals.
Its elements are

Vij=— kzl (Fip — Asr B) [(Foo — App BY Vg (Fyy — Ay EB) (27)

where ¢ and j go over the valence orbitals and k and ! over the core orbitals. This
index convention will be used in the remaining part of this section and will also be
referred to in later sections.
A solution of the reduced secular equations

(Fao— Vg — Baa B) ¢4 =0 (28)
is rather cumbersome since Vg, is dependent on F, not to mention the fact that F
is dependent on ¢ through the density matrix. If a solution of arbitrarily high
accuracy were desired it would probably be easier to solve the original secular
equations directly. However, the matrix My, = Fpp — App E is almost diagonal

due to the smallness of core-core interactions and we can evaluate its inverse by
means of a series expansion

My~ A1~ A BA' + A BA B4 — ... (29)

where 4 = Myy — B is diagonal. Furthermore, as discussed in the previous section
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the core atomic orbitals are close approximations to the core molecular orbitals. We
therefore introduce the notation

Fip = Aix Frr + Gix (30)
where Gi = 0 if

Fyr yx = Frer 2x - (31)
We will here treat only the lowest orders of the Brillouin type perturbation expan-
sion one gets from the series expansion of the matrix inverse (29). Again, if the
series is slowly convergent it would be better to go back to the original secular

equations. We obtain after some simple manipulations

VP = — (Map A Mooy
= — 3 [y (Frr — B) Ags + Gog Agg + Ay Grg +- (32)
)

+ Gix Gry/(Frx — BN ;
VP = (Map A+ BA™* Mya)yy
= Z [Aig(Fri — A B) Ay +

+ Gzlc(Fkl A B) Ay/(Frx — E) + (33)
+ Aig{Fry — Agy B) Gyl(Fy — B) +
+ Gi(Fxr — Ap1 B) Gyl (Fry — B) (Fu — E)]
where the double sum 3’ excludes & = I. The term — > Ay(Frz — E) Apy is the
%

Prrrrres and KiernMaw pseudopotential [20]. If the eigenvalue relation (31) is
fulfilled it is the only non-vanishing term. From the computational point of view
it is important to have the pseudopotential as insensitive to errors in F as possible.
For that purpose we can collect all terms linear in % and include them in the over-
lap matrix. With the notation

FO— VY —E S Au dug
F

V‘z’ V@ + B Y A A Ay (34)
and kil
Ay =dy = 3 Au A+ 3 A A Ay (35)
the secular equations (28) now be:zome ’
(Fuaa + Vaa — Ao B) ca = 0 (36)
Agq is the overlap matrix for the projected valence orbitals {;z} with
~Sduye  and i | gy =0 (37)

An equivalent procedure would be to start by orthogonalizing {y;} against {yz}
and to partition subsequently. In that case integrals over the Fock operator are
given by
| F > == 24w pe | F | 20— 2.0 4w
= Fiy— > (dix Frr Arg + Asx Gy + Gz Arg) + (37a)
%

+ > Aig Fry Ay
Py
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and 5
e | F oy = < — %Aik xr | F | x> (37b)

=Gy~ 2 A Fi.
E#l
If one uses the inverse expansion (29) all terms with the same denominator will be
of the same order.

The operator V is still a function of E. We are however interested in  values
only in the range of valence orbital energies. In the denominators (Fyg — ), £
is thus a numerically small quantity compared to Fp; which is essentially a core
orbital energy. It is also clear that Ay E is numerically small compared to Fy;
where the leading terms are Fy; ~ Agi(er + &) ~ Apy(Frx + Fu)-

The Fock-Dirac density matrix formed from the occupied molecular orbitals
in the partitioned representation becomes rather unwieldy if a higher accuracy is
desired. The expansion of a set of normalized orbitals {¢;} in the AO basis {3} will
be denoted

b= 2 % it (38)
i
with the orthonormalization condition
{bi| > = % o o o | > = €F A ep = 6y (39)
where ¢; stands for the column vector {cm-}, k=1,2, ... The Fock-Dirac density
matrix is given by
o) =2 3 didF =2 3 3 yucuxk o= 2 Bl (40)
i oce. toce. 7.k 7.k
or in matrix notation
R=2 > c¢;cf. (41)

7 OCC.
The summation over ¢ extends over all doubly oceupied space orbitals. Since some
of these belong to the core and others to the valence shell and since orbitals
calculated from the partitioned secular equations (28) or (36) are in general not
normalized to unity, the density matrix becomes quite difficult to evaluate.

The summation over core orbitals can be eliminated in the following way. Let
the space formed by the M linearly independent basis functions {y;} be occupied
by 2M electrons. An arbitrary orthonormal set of orbitals {g;} can be constructed
from {y;} by means of the relation [12]

=y AL U. (42)

Here ¢ and y are the row matrices {¢;, @,, ... @u} and {y;, %a, ... yam} respec-
tively, and U is an arbitrary unitary matrix. A=z fulfills A="/» A~"ls= A-1, and is
assumed to be Hermitian. The density matrix formed from ¢ is

23 qigf =2 =2y AL UU+ A~y =2 3 A1y (43)
or
Ry =2A4A-1. (44)

The Fock-Dirac density matrix for the system can now be obtained by means of
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subtraction of the unoccupied orbitals from Ry giving the result
Ry =241~ 3 ¢ ¢cf). (45)

7 unoce.
The summation over unoccupied orbitals is clearly not over core orbitals. For the
further development we consider a basis of projected valence orbitals. In this case
A-1is given by

Al <A;; 02;1,> (46)
0ps Ay
without any terms linking core and valence orbitals. We write
o= (%) (47)
Cib
where
cip = — My Mg cia (48)

in accordance with (25). The normalization integral becomes
ctAc=c} Auca+cf Appey
= 1 -[— C;- Mab Mb—bl Abb Mgi)l Mba Ca (4:9)

if ¢, is normalized by ¢} Agq ¢z = 1. This normalization comes naturally from the
solution of the partitioned secular equation by conventional matrix diagonalization
methods and is identical to the intermediate normalization common in perturba-
tion theory.

As done previously for the Fock operator we can expand the matrix inverse
M;;! as a power series and insert the result in the density matrix. These results
seem however not to offer much simplification of the computations and will there-
fore be omitted here.

8. Approximate multicenter integrals

Several approximation methods have been proposed for reducing time-
consuming many-center integrals to simple one- and two-center coulomb type
integrals. In z-electron theory the zero-differential-overlap (ZDO) has been widely
applied and PorLE [22] has recently discussed some of its consequences for more
general systems. The success of this approximation is usually coupled with the
success of the Mulliken approximation {17, 15]

x({ XJ Al](%@ XZ + Xz Xi )/ (50)
In a symmetrically orthogonalized basis [72] ¢ = % A~z one sees by expanding
A7 =(1+ 8 h=1-38S+%8%... (51)

that the ZDO approximation ¢; gy = g y; x5 is fulfilled to the first order of Ay.
For large overlap integrals, however, higher order terms in the expansion (51)
might be of importance and it is doubtful how well the ZDO approximation works
in such cases. In this connection we will therefore discuss some approximations of
the Mulliken type.

PorLE [22] found that the ZDO approximation as customarily applied is not
invariant under transformations of the basis. Thus the calculated energy may
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depend on how one chooses pg, py, and p;, orbitals. The same holds for the Mulliken
approximation. Consider integrals of an operator V, which might be the potential
from a nucleus or some kind of electronic charge distribution. The Mulliken
approximation gives

ANV 7> = (V]i) = Ay UV | ) +(V | )2 (52)
Let U be a unitary transformation of the orbitals on center A, thus
a = Zx; Usk - (53)

The condition for invariance of the Mulhken approximation is
(V| k') = daxr [(V | %) + (V| K'K)] where
Aigr = 2,45y Uy - (54)
i

From (52) and (53) we get however
(V|ik) = SV | 6)) U = 3 AV | i) + (V | §i)] Uz (55)
7

J
=3 (V| 50) + 3 Ao Up(V | )]
7

In order to restore the invariance we therefore have to make a further approxima-
tion, (V | i) = constant for all %2 This is equivalent to Pople’s theory with
complete neglect of differential overlap (CNDO).

An approximation which is closely related to the Mulliken approximation and
which is invariant under transformations of atomic orbitals on a particular center
has been discussed by RuEprNBERG [24]. With a complete set of orthonormal
orbitals on each center one can write without approximation

= lEx‘z’Azj= S Augl o
= [;%z 1 Ay + Zﬁmxkx 1/2. (56)

Since the expressjons are exact no invariance properties are destroyed so far. With
truncated sets {7} and {y}} invariance is kept for transformations Wlthm the
truncated sets. The most extreme truncation keeping only x4 of {{} and y? of {42}
gives the Mulliken approximation.

With the Ruedenberg approximation electrostatic integrals are reduced to
integrals of the type (V |47 j9), where ¢ and § may be different orbitals located on
atom g. This approximation is clearly analogous to PoPLE’s neglect of diatomic
differential overlap (NDDO) approximation.

A generalization of the Mulliken and Ruedenberg approximations has been
given by Lowbpixn [13, 14]. Tustead of the arithmetic mean of terms from both
centers, a weighted mean con be employed to give the correct dipole moment of
%7 4%, along the internuclear axis,

X%Z;"—“"LZZM 1 Ay + (L —2) ZAHCXHC)- (87)

It is to be noted, however, that invariance is preserved only if A is a constant
independent of the choice of a particular pair of orbitals on the two centers.
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With the Mulliken approximation several simplifications can be made in the
calculation of matrix elements to the Fock operator. For the Coulomb integrals
one gets

kzl Ru(ij | Bl) = 3 Ay [ D Pi G + 3 Py Gy (58)

) 73 *

where Py = 3 Ryg Ay is the Mulliken gross population of y; and Gy = (ii | 7).
7

Exchange integrals give the following expressions
kZlR/cz(il | kj) = % [(A R A)y; Gy + Z (A R)i Gie A +

+ ZAUC ij RA ]g] AQA zj] (59)

where Qi = Ry Gyy. From the computational standpoint formulas like these are

very convenient [14]. By calculating and storing matrices AR, ARA, AQA and the

vector > Py Gy first, and then evaluating the contributions to F one gets in the
P

computer program a maximum of three instead of four nested loops and a consi-
derable time saving.

The Mulliken approximation has another interesting feature in connection
with the partitioning approach. If core-core overlap integrals are neglected there
are no contributions from core orbitals to electron distributions formed from
projected valence orbitals. With the notation of section 7 we have

~

Figi=(u— Eﬁmm ) (g ~ Z%lé‘n)
=3y — ZAucAm (e %z+xm) (60)

Aigla 30+ 25 2) -
In particular, for ¢ = § we get

w]l—l

Xix1= vy g (61)
which thus takes into account the different normalizations for the two sets of
orbitals.

9. Discussion

A quantum mechanical approximation may be judged under the following
criteria: 1. mathematical rigor, 2. computational simplicity, and 3. agreement
with experiment. The method presented here is a compromise between 1. and 2.
while no emphasis has been placed on 3. in the derivation of formula here. How to
balance 1. and 2. is to some extent a matter of personal taste and several alternative
approaches are possible on the basis of present results.

An excellent agreement with experiment could always be obtained if various
quantitites are fitted to experimental values as is done in the Pariser-Parr-Pople
theory of conjugated hydrocarbons. However, in that way some of the physical
content of the Schrodinger equation is lost and difficulties arise when totally dif-
ferent systems are to be treated. With no or few parameters, our method seems
to be of greatest importance where the experimental information is scarce and ab
initio calculations are too laborious.
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Applications are in progress to inorganic ions and molecules with sulfur or
chlorine as the central atom. Promising results have been obtained for ground state
properties such as bond angles and charge distributions. A detailed account will
be given in forthcoming papers.
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